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ABSTRACT
The differences in distributional patterns between benchmark data
and real-world data have been one of the main challenges of using
electroencephalogram (EEG) signals for eye-tracking (ET) classifi-
cation. Therefore, increasing the robustness of machine learning
models in predicting eye-tracking positions from EEG data is inte-
gral for both research and consumer use. Previously, we compared
the performance of classifiers trained solely on finer-grain data
to those trained solely on coarse-grain. Results indicated that de-
spite the overall improvement in robustness, the performance of
the fine-grain trained models decreased, compared to coarse-grain
trained models, when the testing and training set contained the
same distributional patterns [35]. This paper aims to address this
case by training models using datasets of mixed data complexity
to determine the ideal distribution of fine- and coarse-grain data.
We train machine learning models utilizing a mixed dataset com-
posed of both fine- and coarse-grain data and then compare the
accuracies to models trained using solely fine- or coarse-grain data.
For our purposes, finer-grain data refers to data collected using
more complex methods whereas coarser-grain data refers to data
collected using more simple methods. We apply covariate distri-
butional shifts to test for the susceptibility of each training set.
Our results indicated that the optimal training dataset for EEG-ET
classification is not composed of solely fine- or coarse-grain data,
but rather a mix of the two, leaning towards finer-grain.
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1 INTRODUCTION
Recently, machine-learning classifiers have found more and more
consumer applications as well as "on the field" usage. For exam-
ple, machine learning models can be used to identify shopping
motives relatively early in the search process [19], to detect work-
load strain in truck drivers [13], and to assess the diagnosis of
many neurological diseases such as Autism Spectrum Disorder and
Alzheimer’s [4, 11, 30, 31]. Machine learning approaches have also
shown adequate performance on computer vision bioinformatics
applications, medical image analysis, Eye-Tracking (ET) analysis,
and Electroencephalography (EEG) analysis [1, 3, 8, 15, 22, 23, 25–
27, 29, 36, 37, 40].

As machine learning classification is used in more and more
unfamiliar environments, it is increasingly important for these
classifiers to be robust. In the EEG-ET research, recent work in this
area has focused on determining what machine learning models
are best equipped to predict eye position from EEG signals [15] as
well as eliminating the noise associated with EEG data collection
automatically [17, 21, 24, 28, 33, 39].

These approaches all examine robustness across a variety of
underlying factors of data analysis. In this paper, We focus on the
inherent distributional patterns and the underlying differences be-
tween finer-grain and coarser-grain data. For this paper, finer-grain
data refers to data collected in a more complicated framework in
an environment with more uncontrolled conditions. On the con-
trary, coarser-grain data refers to data collected in a more simplified
collection format with more restrictions on the experiment’s envi-
ronment for the same task.

In medical research, fine-grain data collection methods have
been explored with great success [9, 20]. That is the use of data
from more complex, or finer-grained, data collection methods to
test for simpler tasks. Oftentimes, systems developed in a coarse-
grained "lab conditions" only work in controlled environments,
causing difficulties when utilized in uncontrolled conditions [16, 34].
Recently, fine-grain data approaches have shown successful results
for Covid-19 contact tracing machine learning classifiers [7]. In
this paper, We want to emphasize the impact of data granularity
as well as the beneficial effects of using fine-grain data in machine
learning classification.

Previously, we showed that Machine Learning models trained on
fine-grained data are more robust, meaning that theymaintain more
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Figure 1: Schematic for the location of the cues on the screen
in the PA (Left) and LG Tasks (Right) [12]

consistent accuracies, than models trained on coarse-grained data
when tested on data of different complexities [35]. We extend upon
our previous findings by examining the idea of training on mixed
fine- and coarse-grain datasets. To our knowledge, this approach
was not tested with machine learning classifiers before. The goal
of mixing datasets of varying data granularity is to improve upon
the draw-back we previously found with training on purely fine-
grain data. That is the model’s performance when tested on data of
similar complexity drops a significant amount when compared to
purely coarse-grain data. We suspect that a mixed complexity train-
ing set may perform adequately across a broader range of testing
distributional patterns, including different and similar complexities.

In this study, we train machine learning models for left-right eye-
tracking classification using data from a mix of binary-classified
(coarse-grain) and vector-based (fine-grain) collection frameworks.
We then compare the results to models trained exclusively on either
binary-classified or vector-based data. The goal is to expand upon
our previous conclusions regarding the optimal method to increase
both accuracy and robustness of machine learning classifiers using
fine- and coarse-grain data. Robustness is determined by the accu-
racy after a covariate distributional shift. The distributional shift in
combination with the different mixes of data complexity attempts
to mimic realistic data which often contains varying distributional
patterns. Since we had previously determined the superiority of
fine-grain data in terms of robustness, we hypothesize that classi-
fiers trained using more fine-grain data will attain higher accuracies
after covariate distributional shifts are applied.

The purpose is to determine the "Goldilocks" or optimal training
set composition of fine- and coarse-grain data for left-right gaze
classification in terms of both accuracy and robustness as well as
verify that fine-grain data performs better than coarse-grain data
using a more encompassing experimental design.

2 DATA
We used the EEGEyeNet dataset due to its large size [12]. The
dataset contains simultaneously-recorded EEG signals and Eye-
Tracking data from three different experimental tasks. A summary
table for the three tasks’ metadata is in Appendix D. In this study,
we used data from two experiments: pro-antisaccade (PA) and Large
Grid (LG). In the PA trials, participants were asked to focus on a
cue that appears on either the screen’s center, horizontally left, or
horizontally right, as shown in the left screen in Figure 1. Gaze
positions in PA were restricted to the horizontal axis and were
binary-classified either left or right, relative to the screen’s center.
In the LG trials, participants were asked to fixate on dots presented
one at a time at 26 different screen positions, as shown in the right

Figure 2: A description of the different compositions of fine-
and coarse-grain data used in this study

screen in Figure 1. Therefore, LG’s framework enabled finer-grain
data collection since it allowed more freedom for eye movements,
and gaze positions were encoded in a two-dimensional format
including both angle and amplitude, compared to the one-liner
binary-encoded eye movements in PA.

3 EXPERIMENT DESIGN
The learning objective of the models trained in our experiment was
to use EEG brain signals to predict the direction of a subject’s gaze
along the horizontal axis (whether they are looking to the left or
the right). Although predictions for this task using the same dataset
were previously made, they were performed exclusively using data
from the PA tasks for training and testing [12].

In this paper, we train 13 classifiers using data that is composed
of a mixture of both PA and LG data and perform a covariate dis-
tributional shift by comparing their performance based on their
accuracy when tested on PA and LG data. The different composi-
tions are described in Figure 2

3.1 Data Processing
Given the classification nature of our learning problem, data from
the LG task, encoded as Angle and Amplitude, should be trans-
formed and relabeled into the expected format as left or right for
training left-right classification models. The convention we used
for the relabelling process was that for angle 𝛼 ; when |𝛼 | < 𝜋

2 the
data is classified as right, otherwise the data is classified as left.
This logic was confirmed by the dataset’s authors in Appendix A
and is shown in Figure 3.

3.2 Models Training
As per EEGEyeNet authors’ recommendation, we used the mini-
mally preprocessed EEG data. Data processing was done using the
NumPy library, and the model implementations were installed from
the SKlearn library [18]. From a broader perspective, models were
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Table 1: The 20 different possible combinations of training and testing sets

Training Set Testing Set
LG LG Mixed (20-80) Mixed (40-60) Mixed (60-40) Mixed (80-20) PA
PA LG Mixed (20-80) Mixed (40-60) Mixed (60-40) Mixed (80-20) PA

Mixed (20-80) LG PA
Mixed (40-60) LG PA
Mixed (60-40) LG PA
Mixed (80-20) LG PA

trained and tested on 4 different combinations: models trained on
mixed data and tested on PA data, models trained on mixed data
and tested on LG data, models trained on PA data and tested on
mixed data, and models trained on LG data and tested on mixed
data. For each of the 4 combinations, the mixed data had 6 different
compositions of PA and LG data, shown in Figure 2, which lead
to 24 different combinations. However, 4 of these combinations
are counted twice, leading to only 20 different combinations. A
summary of the 20 unique combinations is shown in Table 1.

4 MODELS
4.1 Machine Learning Models
In this study, machine learningmodels operate on features extracted
from the data rather than the data itself. Feature extraction has
been applied in two steps. First, [12] applied a band-pass filter in
frequencies in the range [8 - 13 HZ] on the acquired signals through
all trials. This choice of frequencies is based on suggestions from
[6]. Following the filtering step, the Hilbert transform was applied,
resulting in a complex time series from which targeted features
were extracted for learning models. Since we are considering a
classification problem, we experimented with classification-only
models and models that can be applied to both classification and
regression problems.

Figure 3: Illustration of angle 𝛼 . P1 represents the initial
gazing position of the eye and P2 represents the end gazing
position of the eye. The line between them represents the
movement of the eye.

4.1.1 Linear Classifiers: Linear classifiers gather discriminant clas-
sifiers that use linear decision boundaries between the feature
vectors of each class [15]. In this paper, we will use Linear and
Radial-Basis-function Support Vector Classifiers (SVC) and Normal
and Shrinkage Linear Discriminant Analysis (LDA) classifiers. All
four algorithms still perform well after several decades since they
were first implemented in this field, with SVC outperforming other
classifiers, especially for two-classes problems [2, 14, 15].

4.1.2 Ensemble Classifiers. Ensemble (or voting) classifier is a ma-
chine learning classification algorithm that trains with different
classification models and makes predictions through ensembling
their predictions to make a stronger classification. These algorithms
have been the gold standard for several EEG-based classification
experiments [25]. In our study, we used Random Forest, XGBoost,
GradientBoost, RUSBoost, and AdaBoost.

4.1.3 Naive Bayes and Decision Tree Classifiers. Naive Bayes (NB)
Classifier is the statistical Bayesian classifier [5]. It assumes that
all variables are mutually correlated and contribute to some degree
towards classification. It is based on the Bayes’ Theorem and is
commonly used with high dimensional inputs. On the other hand,
a decision tree is not a statistically based one; rather, it is a data
mining induction technique that recursively partitions the dataset
using a depth-first greedy algorithm until all data is classified with
a particular class. Both NB and the decision tree are relatively fast
and well suited for large data. Furthermore, they can deal with
noisy data, which makes them well suited for EEG classification
applications [10].

4.2 Deep Learning Models
Deep learning is a subfield of machine learning algorithms in which
computational models learn features from hierarchical representa-
tions of input data through successive non-linear transformations
[29]. Deep learning methods, especially Convolutional Neural Net-
work (CNN), performed well in several previous EEG band power
(feature) based research [25]. Still, these methods have not demon-
strated convincing and consistent improvements [15]. Given so and
the expected high run time for such algorithms due to the dataset’s
large size, we only included a simple and relatively fast multi-layer
perception neural network (MLP) in our experiment.

5 RESULTS
We trained and tested the machine learning models using datasets
composed of both fine- and coarse-grain data (pro-antisaccade and
"transformed" large grid) and compared the results. Thus, we had
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Table 2: Models Trained on Mixed Data and Tested on Pro-Antisaccade Data

Model PA Mixed (80-20) Mixed (60-40) Mixed (40-60) Mixed (20-80) LG
XGBoost 96.7% 96.7% 95.7% 96.3% 95.5% 94.5%
GradientBoost 96.4% 96.3% 95.7% 95.7% 95.8% 94.2%
RandomForest 95.9% 95.7% 95.5% 95.1% 94.3% 93.3%
AdaBoost 95.4% 94.8% 94.7% 94.2% 94.0% 93.1%
RUSBoost 95.3% 95.2% 94.3% 93.7% 93.4% 93.4%
DecisionTree 94.4% 94.7% 94.1% 93.8% 93.4% 92.1%
MLP 92.8% 93.9% 93.3% 92.4% 92.1% 91.3%
LinearSVC 91.1% 90.4% 90.6% 90.5% 89.9% 89.9%
LDA 90.6% 90.6% 90.2% 90.2% 90.0% 89.8%
sLDA 90.3% 90.3% 90.1% 89.8% 90.1% 89.8%
KNN 90.3% 89.3% 89.3% 88.1% 88.4% 87.9%
RBF SVC 89.2% 89.2% 88.0% 87.3% 88.3% 88.1%
GaussianNB 86.0% 85.4% 84.6% 83.9% 84.3% 82.8%
Average 92.6% 92.5% 92.0% 91.6% 91.5% 90.8%

Table 3: Models Trained on Mixed Data and Tested on Large Grid Data

Model PA Mixed (80-20) Mixed (60-40) Mixed (40-60) Mixed (20-80) LG
XGBoost 92.7% 94.1% 94.3% 95.4% 95.2% 95.4%
GradientBoost 91.8% 93.7% 93.4% 94.6% 94.9% 95.3%
RandomForest 90.9% 93.1% 93.1% 93.8% 94.0% 93.9%
AdaBoost 89.2% 90.1% 91.5% 92.5% 93.0% 93.4%
MLP 89.5% 91.2% 90.4% 91.2% 92.3% 92.9%
RUSBoost 86.0% 90.4% 90.8% 92.5% 92.5% 92.7%
DecisionTree 88.0% 90.0% 90.1% 91.9% 91.6% 91.9%
sLDA 90.3% 90.8% 91.5% 91.4% 90.9% 91.8%
LDA 89.9% 90.6% 91.2% 90.9% 90.7% 91.6%
LinearSVC 89.8% 91.2% 91.5% 91.5% 91.2% 91.1%
KNN 89.3% 89.2% 88.8% 88.9% 89.9% 90.0%
RBF SVC 84.8% 85.5% 85.8% 87.2% 87.4% 88.6%
GaussianNB 83.4% 82.7% 82.8% 83.2% 87.1% 87.2%
Average 88.9% 90.2% 90.4% 91.2% 91.6% 92.0%

Table 4: Models Trained on Pro-Antisaccade Data and Tested on Mixed

Model PA Mixed (80-20) Mixed (60-40) Mixed (40-60) Mixed (20-80) LG
XGBoost 96.7% 95.4% 93.7% 93.3% 93.2% 92.7%
GradientBoost 96.4% 95.0% 93.2% 92.6% 92.7% 91.8%
RandomForest 95.9% 94.5% 92.2% 91.7% 91.7% 90.9%
AdaBoost 95.4% 93.6% 91.0% 90.5% 90.1% 89.2%
RUSBoost 95.3% 93.0% 89.5% 88.1% 87.2% 86.0%
DecisionTree 94.4% 92.2% 90.0% 88.6% 89.2% 88.0%
MLP 92.8% 91.5% 89.5% 89.9% 90.4% 89.5%
LinearSVC 91.1% 90.0% 88.7% 89.5% 90.4% 89.8%
LDA 90.6% 89.9% 88.7% 89.2% 90.9% 89.9%
sLDA 90.3% 89.6% 88.6% 89.2% 91.1% 90.3%
KNN 90.3% 90.1% 89.6% 89.1% 90.1% 89.3%
RBF SVC 89.2% 87.2% 85.5% 84.7% 86.0% 84.8%
GaussianNB 86.0% 84.9% 84.0% 83.7% 84.9% 83.4%
Average 92.6% 91.3% 89.6% 89.2% 89.8% 88.9%
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Table 5: Models Trained on Large Grid Data and Tested on Mixed

Model PA Mixed (80-20) Mixed (60-40) Mixed (40-60) Mixed (20-80) LG
XGBoost 94.5% 93.9% 94.1% 94.8% 95.9% 95.4%
GradientBoost 94.2% 93.7% 93.9% 94.5% 95.8% 95.3%
RandomForest 93.3% 93.0% 93.2% 93.1% 94.3% 93.9%
AdaBoost 93.1% 93.0% 93.0% 92.9% 93.8% 93.4%
MLP 91.3% 91.3% 92.0% 92.4% 93.6% 92.9%
RUSBoost 93.4% 92.8% 92.5% 92.3% 93.2% 92.7%
sLDA 89.8% 90.1% 90.1% 90.4% 92.6% 91.8%
DecisionTree 92.1% 91.9% 91.3% 91.1% 92.5% 91.9%
LDA 89.8% 90.1% 89.9% 90.2% 92.3% 91.6%
LinearSVC 89.9% 90.3% 89.9% 90.0% 92.0% 91.1%
KNN 87.9% 87.8% 88.5% 88.8% 90.3% 90.0%
RBF SVC 88.1% 87.4% 88.1% 88.5% 89.5% 88.6%
GaussianNB 82.8% 83.4% 84.1% 84.9% 87.8% 87.2%
Average 90.8% 90.7% 90.8% 91.1% 92.6% 92.0%

20 combinations of training and testing datasets described in Table
1.

Determining the Goldilocks composition of fine- and coarse-
grain data for training is the main objective of this paper as it will
indicate the optimal method of maintaining high accuracy and
consistency. We also verified the results of fine- versus coarse-grain
data by finding the accuracies of models when trained on PA/LG
and tested on mixed data.

Results regarding the accuracies of select models as well as the
average accuracy for each combination are provided in Tables 2, 3,
4, and 5. Table 6 is a summary of Tables 2 and 3.

The average accuracy of models trained on PA and tested on
mixed is 90.2% as shown by the average of the averages in Table 4.
The average accuracy of models trained on LG and tested on mixed
is 91.3% as shown by the average of the averages in Table 5. The
accuracy of models train on LG is also more compact and closer to
the average accuracy. Clearly, finer-grain data is in general more
applicable to real life data as it is more accurate across a broader
range of distributional patterns. This confirms our previous findings
across a more complete range of data complexity.

Note that although we did not include standard deviations in
our tables, we did calculate them, but since they were insignificant
(generally less than 0.1%) we decided to not include them in our
results.

Table 6: Average Accuracies ofModels Trained onMixed Data
and Tested on Pro-Antisaccade/LG Data

Data Composition PA LG Average
PA 92.6% 88.9% 90.75%
Mixed (80-20) 92.5% 90.2% 91.35%
Mixed (60-40) 92.0% 90.4% 91.2%
Mixed (40-60) 91.6% 91.2% 91.4%
Mixed (20-80) 91.5% 91.6% 91.6%
LG 90.8% 92.0% 91.4%

6 DISCUSSION
Table 6 describes the average accuracy from 13 different machine
learning model for left-right ET classification trained on data of
different data complexity compositions.

This paper utilizes the benchmark data from the EEGEyeNet
dataset and 13 machine learning models to create left-right classi-
fiers trained on data of varying compositions of fine- and coarse-
grain data. The accuracies of the models are then tested using two
testing sets with distinctly different distributional patterns (PA and
LG). In this way, the effects of covariate distributional shifts are
more apparent and provide insight on the optimal data complexity
composition of fine- and coarse-grain data in order to reduce the
impact of such phenomenon. The results also provide useful infor-
mation on the types of machine learning classifiers that should be
used for EEG-ET classification tasks.

6.1 Finding the Goldilocks Composition
Previously, we had concluded that machine learning classifiers
trained purely on fine-grain data outperform machine learning
classifiers trained purely on coarse-grain data in terms of robustness.
This was confirmed by Tables 4 and 5. Therefore, we theorized that
the ideal composition of data complexity would lean towards finer-
grain data.

The hypothesis is confirmed by Table 6. The composition of
20% coarse-grain data and 80% fine-grain data produced the most
consistently accurate results as shown by the average percentages.
This suggests that the optimal training set for EEG-ET classifica-
tion should not be created using data of solely one distributional
complexity, but rather a mix of both fine- and coarse-grain data,
leaning towards more fine-grain data.

6.2 Determining the Best Classifiers for EEG-ET
Classification

The consistently most accurate classifiers across Tables 4, 5, 2, and
3 are XGBoost, GradientBoost, and RandomForest. Alternatively,
the consistently worst performing classifiers were RBF SVC and
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GaussianNB. Therefore regardless of distributional complexity, XG-
Boost, GradientBoost, and RandomForest should be used to classify
EEG-ET data.

6.3 Future Recommendations and
Improvements

To further advance the work provided in this study, four steps are
highlighted for future exploration.

Although deep learning models were excluded due to inconsis-
tent results [15], the main reason was due to restraints in time and
resources. As deep learning models, especially CNN and Attention
[32, 38], have shown promising results in regards to EEG-ET clas-
sification, it is important to thoroughly explore the effects of fine-
versus coarse-grain data on the robustness of such models.

Additionally, the angle value is currently the only indicator used
to determine whether the saccade is towards the left or the right.
The amplitude was completely ignored in data processing. The
amplitude could be incorporated by using it as a weighting/scaling
factor to indicate the left-right extension and solve this as a re-
gression problem. Based on the predictions made by the regression
value, we can then classify it as either left or right utilizing finer-
grain data.

Furthermore, although we determined an approximately opti-
mal training set, we are almost certain this is not the Goldilocks
composition for mixed data complexity. Perhaps an application of
gradient descent would be able to more precisely compute such a
composition for each machine learning model and specific machine
learning task. Additionally due to time restraints, we were unable
to test our machine learning models trained on mixed distributional
complexity against a broader range of testing sets like we did for
exclusively fine- or exclusively coarse-grain trained classifiers in
Tables 4 and 5.

Although our work discusses EEG-ET classification, the results
can be potentially relevant to other machine learning models in
other applications. We highly encourage further investigation on
training machine learning models on data composed of different
granularities across an array of other research topics.

7 CONCLUSION
The motivation behind this work was to extend upon our previous
work on determining whether training machine learning models
on finer-grain data leads to more robust models as well as to ana-
lyze the effects of training machine learning classifiers on datasets
composed of mixed data complexity. We verified our previous find-
ings across a broader range of distributional patterns as well as
determined that ensemble methods are the most suitable machine
learning classifiers for EEG-ET classification tasks. Furthermore
we identified that EEG-ET machine learning classifiers seem to pro-
duce the most consistent results when the training set contains a
mix of distributional patterns, leaning towards finer-grain data. We
hope that future applications of practical EEG-ET interfaces utilize
data of varying distributional patterns to increase classification
accuracy and robustness.
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9 APPENDICES
9.1 Appendix A
After emailing Ard Kastrati, Ard verified that for angle 𝛼 in radians:

𝛼 = 0 is right
𝛼 = 𝜋

2 is down
𝛼 = 𝜋 is left
𝛼 = −𝜋

2 is up

9.2 Appendix B
The models were trained and tested on this environment settings:

OS: Mac 12.2.1

Cuda: 9.0, Cudnn: v7.03
Python: 3.9.0
cleverhans: 2.1.0
Keras: 2.2.4
tensorflow-gpu: 1.9.0
numpy: 1.22.1
keras: 2.2.4
scikit-learn 1.0.2
scipy 1.8.0
The total space occupied by the dataset on the device is 69.0574

GB, and the total time for training and testing was 30 mins on
average.

9.3 Appendix C
The code for data processing and evaluation is provided here: https:
//github.com/ayahia1/KDD-ML

9.4 Appendix D
Themain reason for using EEGEyeNet in our studywas its relatively
large size. The table below presents the number of subjects, the
number of sample data points, and the length of the recording time
for each of the three experimental tasks in the EEGEyeNet dataset.
The numbers below should prove the large size of this dataset.

Notes: First, in the table, experimental tasks are referred to as
"paradigms." Secondly, although the total number of subjects in the
table is 486, some performed more than one experiment and, thus,
referenced twice. The total number of unique subjects, when the
dataset paper was first published, was 356. Finally, the recording
time column contains the numbers rounded to the nearest hour.

Table 7:Metdata comparison of the 3 experimental paradigms

Paradigm # subjects # samples Recording time
PA 369 30842 38h
Large Grid 30 17830 8h
VSS 87 31563 1h
Total 486 80235 47h

https://arxiv.org/abs/2208.00465
https://github.com/ayahia1/KDD-ML
https://github.com/ayahia1/KDD-ML
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